
有理数的加减法教案
作为一名为他人授业解惑的教育工作者,常常要写一份优秀的教案,教案是教学蓝图,可以有效提高教学效率。我们应该怎么写教案呢?以下是小编精心整理的有理数的加减法教案,仅供参考,欢迎大家阅读。
有理数的加减法教案1教学目标
1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;
2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
教学建议
(一) 重点、难点分析
本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。
(二)知识结构
(三)教法建议
1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。
3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。
4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。 教学设计示例
有理数的减法
一、素质教育目标
(一)知识教学点
1、理解掌握有理数的减法法则。
2、会进行有理数的减法运算。
(二)能力训练点
1、通过把减法运算转化为加法运算,向学生渗透转化思想。
2、通过有理数减法法则的推导,发展学生的逻辑思维能力。
3、通过有理数的减法运算,培养学生的运算能力。
(三)德育渗透点
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
(四)美育渗透点
在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。
二、学法引导
1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。
2、学生学法:探索新知→归纳结论→练习巩固。
三、重点、难点、疑点及解决办法
1、重点:有理数减法法则和运算。
2、难点:有理数减法法则的推导。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片。
六、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。
七、教学步骤
(一)创设情境,引入新课
1、计算(口答)(1); (2)-3+(-7);
(3)-10+(+3); (4)+10+(-3)。
2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的.最高气温比最低气温高多少?
教师引导学生观察:
生:10℃比-5℃高15℃。
师:能不能列出算式计算呢?
生:10-(-5)。
师:如何计算呢?
教师总结:这就是我们今天要学的内容。(引入新课,板书课题)
教法说明1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。
(二)探索新知,讲授新课
1、师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7。
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7。
师:让学生观察两式结果,由此得到
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3)。
教法说明
教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。
2、再看一题,计算(-10)-(-3)。
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。
生:(-10)+(+3)=-7。
教师引导、学生观察上述两题结果,由此得到:
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3)。
教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。
教法说明
由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标。
师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充。
师:出示有理数减法法则:减去一个数,等于加上这个数的相反数。(板书)教师强调法则:
(1)减法转化为加法,减数要变成相反数。
(2)法则适用于任何两有理数相减。
(3)用字母表示一般形式为:。
教法说明
结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义。从而使学生体会到数学来源于实际,又服务于实际。
3、例题讲解:
[出示投影1 (例题1、2)]
例1 计算(1)(-3)- ……此处隐藏2354个字……经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为
4+(-2),黄队的净胜球为
1+(-1)。
这里用到正数与负数的加法。
(二)、师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.
两个有理数相加,有多少种不同的情形?
为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,打平为“0”.比如,赢3球记为+3,输1球记为-1.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球.也就是
(+3)+(+1)=+4.
(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是
(-2)+(-1)=-3.
现在,请同学们说出其他可能的情形.
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是
(+3)+(-2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是
(-3)+(+2)=-1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是
(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是
(-2)+0=-2;
上半场打平,下半场也打平,全场仍是平局,也就是
0+0=0.
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的`两个数相加得0;
3.一个数同0相加,仍得这个数.
(三)、应用举例 变式练习
例1 口答下列算式的结果
(1)(+4)+(+3); (2)(-4)+(-3); (3)(+4)+(-3); (4)(+3)+(-4);
(5)(+4)+(-4); (6)(-3)+0; (7)0+(+2); (8)0+0.
学生逐题口答后,师生共同得出
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
例2(教科书的例1)
解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)
=-(3+9) (和取负号,把绝对值相加)
=-12.
(2)(-4.7)+3.9 (两个加数异号,用加法法则的第2条计算)
=-(4.7-3.9) (和取负号,把大的绝对值减去小的绝对值)
=-0.8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)、小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
1.计算:
(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4)(+6)+(+9);
(5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;
(4)3.29+1.78; (5)7+(-3.04); (6)(-2.9)+(-0.31);
(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.
4.用“>”或“
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
五.教学反思
“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.
现在,试比较这两类教学设计的得失利弊.
第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.
第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
六.点评
潘老师对本节课的设计是比较好的,体现学生是学习的主人,教师是教学活动的组织者,引导者和叁与者。的确,新课程的实施给教师提出了全新的挑战。在新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师在教学中要站在课程标准的角度挖掘教材,把教材内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的学习积极性
文档为doc格式