
《方程的意义》教案汇编【15篇】
作为一名无私奉献的老师,通常需要准备好一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么优秀的教案是什么样的呢?以下是小编为大家收集的《方程的意义》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《方程的意义》教案1教学目标:
(1)使学生理解方程概念,感受方程思想。
(2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
教学过程:
一、创设情景,抽象数学模式。
1.出示实物天平。
(实物天平比较小,用屏幕上的天平来模拟实验。)
2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢?
(说明两边的重量可能有三种不同的关系。)
用式子描述重量之间的相等关系。
3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?
用式子表示两队比分的关系。
红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了χ分,请你猜一猜,两队的情况会怎样呢?
用式子来表示比分的三种关系。
4.创设四个情景。
(1)每个情景中数量之间有什么关系?
(2)你能用关系式清晰地来描述吗?
二、引导分类,概括方程概念。
刚才我们对情景的描述得到了很多式子。
200+200=400 18 < 23 18+χ<23>23 18+χ=23
280 > 100 120 < 4χ 25+χ=70 22y+720=1050
1.学生尝试第一次分类。
可能有几种不同的分法。
(1) 看是否是等式。
(2) 看是否含有未知数。
……
2.学生尝试第二次分类。
得到四组不同的式子。
3.描述每一组的特征。
4.引导概括方程概念。
含有未知数的等式叫方程。
三、抓等量关系,体会方程本质。
1.演示动态平衡。有等量关系,能用方程表示
2.出示情景(没有等量关系,不能用方程表示。)
出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)
3.通过今天这节课,你学到了什么呢?
四、联系实际,应用与拓展。
1.周老师从无锡到徐州来上课。
(1)线段图。
(2)我乘火车从无锡站开出,每小时行χ千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。
(3)到了徐州站,我买了3枝圆珠笔,每枝χ元,付出20元,找回2元。
2.情景图。
本届奥运会上,中国台北队获得了χ枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。”
3.开放题。
小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多? (用方程表示)
“方程的意义”教学设计的说明
在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的'知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。
整体的把握:
数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:
形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。
发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。
直观具体层面——举出正例或反例。
直觉层面——一种数学的意识、一种方程的感觉。
这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)
目标的把握:
经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。
渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。
过程的把握:
统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。
本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。
经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。
参考文献:
(1)史宁中、孔凡哲着. 方程思想及其课程教学设计——数学教育热点问题系列访谈录之一. 《课程.教材.教法》第24卷第9期,(2)林永伟、叶立军 编着.《数学史与数学教育》第65页. 方程产生历史的启示意义。
(3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。
《方程的意义》教案2【教材分析】方程在小学乃至初中整个学习过程中,都具有非常重要的地位。《方程的意义》这一节内容是学习其他方程知识的基础。本课只要求学生初步理解方程的意义,知道什么是方程,能判别一个式子是不是方程。整个教学过程先通过天平演示引出等式和含有未知数的等式,然后对一些不同的式子通过观察 ……此处隐藏18102个字……么左边表示的是什么?右边表示的又是什么?
2.不平衡到平衡现象数量关系的抽象概括
师:我这里还有一个大果冻,不知道是多少克,可以用什么来表示呢?我们把这个重X克的果冻放在天平的左边,右边放一个克的砝码,这时天平平衡吗?
师:谁能用一个数学式子来表示现在天平的这种不平衡状况?(生:X<)师:那我们怎样才能让天平平衡呢?(生:往左边盘中加砝码)我们往果冻
这边加150克砝码,观察天平平衡了吗?
师:左边盘中物体质量的可以怎样表示?(生:X+150)
师:能用一个数学式子来表示现在天平的这种不平衡状况?(生:X+150>)
师:刚才往左边盘中加的物体多了,现在我们拿掉50克,现在天平的.左边怎样表示呢?
师:谁能用一个数学式子来表示现在天平的这种平衡状况?(生:X+100=)
3.不确定现象数量关系的抽象概括
师:我这里还有两瓶矿泉水,红色的有380克,蓝色的有350克,如果将这两瓶矿泉水放到天平左右两边,天平会怎么样?
师:现在请一位同学将这瓶矿泉水喝掉一些,谁来?(请一位同学喝)
师:这瓶矿泉水被喝掉了多少克?(生:不知道)
师:可用什么来表示喝了的克数?(生:用X来表示喝了的克数,即X克)
师:这瓶矿泉水剩下的质量可以怎样表示?[生:(380-X)克]
师:如果现在把这两瓶矿泉分别放在天平的左右两边,天平会出现什么状况?(生:可能平衡,可能左轻右重,可能左重右轻,分别用380-X=350、380-X<350、380-X>350来表示)
(三)观察分类,抽象概念
1.观察分类。
师:大屏幕上出现的这些数学式子,你能按照这些数学式子的不同特征分类吗?请孩子们自己独立思考,按自己的方式进行分类。(自主学习)
2.展示分类。
①交流分类情况,说明分类理由。
②揭示“等式”与“不等式”的概念
师:像这样的含有等号的式子,数学上称之为等式。像这些含有不等号的式子,我们都称之为不等式。(课件出示相应的分法。)
3.抽象概念
师:请同学们仔细观察这些等式,它们有什么不同?
师:这些等式中的字母表示“未知数”,像这些“X+100=
含有未知数的等式,称之为方程。这就是我们今天学习的内容。(板书课题)
师:谁来说说什么是方程?(板书:含有未知数的等式叫方程)
(四)应用新知,加深理解
1.判断下列式子是不是方程。
2.创作方程。
3.问题质疑,揭示方程与等式的关系。
①含有未知数的式子是方程?
②“方程一定是等式,等也一定是方程?
(五),巩固练习。
师:说说你这节课有什么收获,你还想学习有关方程的什么内容。
师:我们一起来应用今天所学的知识吧!
《方程的意义》教案15设计说明
1、引导学生边观察、边思考,提高自主学习能力。
《数学课程标准》中指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验的基础上。本教学设计没有将等式、方程的概念强加给学生,而是充分尊重学生的原有知识水平,结合具体情境,运用天平保持平衡的原理来解释各数量之间的相等关系,按照教材上的连环画,通过教师反复操作,一步一步观察,思考每一步骤的数学含义,让学生逐步理解式子中的“=”就是天平的平衡,从而让学生初步体验和感受方程的意义。 2。引导学生辨方程、写方程,重视学情反馈。
数学学习重要的是巩固和应用,因此学习后的学情反馈是很重要的。本设计在学生明确方程的概念后,引导学生自己写方程,识别方程并说出理由的练习,进一步掌握方程的意义,明确判断一个式子是不是方程的两个要素:一看是不是等式,二看有没有未知数。通过应用反馈,加深对方程特点的理解,提高了学习效率。
课前准备
教师准备:PPT课件、学情检测卡、课堂活动卡
学生准备:小黑板、练习卡片
教学过程
情境引入,体会“等”与“不等”
师:同学们,我们学校一年一度的足球比赛又如火如荼地开始了,昨天的比赛是五(1)班对战五(3)班,由于上半场五(3)班发挥出色,上半场的比分为1∶4,中场休息后,五(1)班马上调整了战术,下半场五(3)班没得分,五(1)班连追了x分。
师:两个班最后的比分是几比几?(学生回答,教师板书:x+1∶4)
师:哪个班赢了?你能用一个数学式子来表示吗?
(学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的意义)
师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)
设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。
情境呈现,抽象模型
1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)
自学提示:
(1)理解教材62页每幅图画及对应式子的含义。
(2)标示出你认为重要的内容。
(3)思考:方程应该具备哪几个条件?
(4)结合你对方程概念的理解,完成教材63页“做一做”1题。
2、合作学习。
(1)你能自己写几个方程吗?小组内互相订正。
(2)组内交流收获。在小组内互相说一说:你学到了什么?
由组长带领组内成员集体订正教材63页“做一做”1题的`答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。
(3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。
(此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)
预设:
①全班同学的答案一致,全对。
②一部分小组全对,一部分小组有错误。
这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。
3、整理分类,加深对方程意义的理解。
(1)组织学生分组活动,根据黑板上的算式特点进行分类。
(2)交流汇报,说出分类依据。教师板书。
4、独立完成教材63页“做一做”2题,汇报,集体订正。
5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。
文档为doc格式